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SUMMARY

A simple add-on adaptive control algorithm is presented. The paper demonstrates via example that the per-
formance of existing missile autopilot can be improved. The algorithm involves the synthesis of parallel
feedforward, which guarantees that the controlled plant is almost strictly positive real. It is proved in the
paper that such a parallel feedforward always exists. The proof is based on the parameterization of a set
of stabilizing controllers. This parameterization enables straightforward design and implementation of the
add-on simple adaptive control algorithm. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Very often, the designer of an existing autopilot system is required to improve the performance under
changing and uncertain environments. The improved performance may include larger performance
envelope, faster response, improved robustness, and so on.

There are several approaches to confront this challenge. Among them are the following: (i)
redesign the entire autopilot; (ii) replace or add sensors; (iii) adopt new control technology; and
(iv) apply new algorithms with the existing hardware. In this paper, the proposed approach is to
use an add-on adaptive control algorithm. The main advantage of the proposed approach is that
the autopilot is not completely redesigned, rather the original system is preserved, and a simple
addendum improves the performance and robustness.

The novelty of this paper is twofold: (1) Existence of an algorithm that not only improves the
performance and robustness of a given autopilot but also adapts the control system to eventual
parameter changes; and (2) synthesis of the algorithm for proper and stable plants and also for
any strictly proper plant. The synthesis deals with SISO systems and is based on the parameteri-
zation of a set of stabilizing controllers. This parameterization enables straightforward design and
implementation of the add-on simple adaptive control (SAC) algorithm [1–3]. Gain conditions and
convergence of SAC are discussed in [4], where it is shown that the SAC adaptive feedforward
gains perform a steepest decent minimization of the error without using any specific knowledge on
plant parameters. An updated reference for the theory of passivity and adaptive control in nonlinear
systems is in [5].

Promising results of add-on SAC in missile application appear in [6]. As an example, the add-on
adaptive control algorithm is applied to improve the performance and robustness of the ‘three-loop
autopilot’ [7–9]. Similar approach has been used in [10–13].
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Figure 1. Three loop pitch/yaw autopilot.

The paper states the problem in Section 2, reviews the SAC algorithm in Section 3, and describes
the add-on SAC algorithm in Section 4.The application of the add-on SAC algorithm to existing
design of three loop autopilot is presented in Section 5. Conclusions are given in Section 6. The
existence and synthesis of parallel feedforward that converts SISO system to be almost strictly
positive real (ASPR) are discussed in the Appendix.

2. STATEMENT OF THE PROBLEM

Most air to air and surface to air missiles use a three-loop lateral autopilot [7], as shown in Fig-
ure 1. The three loops are the synthetic stability loop that includes the integrator, the accelerometer
feedback loop, and the rate loop. The major components of the flight control system include the
airframe, the aerodynamic control surfaces, the actuator, the rate gyro, and the accelerometer. The
rate loop is the wideband loop, and structural vibrations are most evident in that loop.

The design scheme presented in Figure 1 is based on the following assumptions:

1. The Inertial Measuring Unit is located in the body center of gravity.
2. Each of the modal transfer functions is in parallel with the rigid body aerodynamic transfer

function. The gyro senses the flexible body motions in addition to the rigid body motions.
3. The accelerometer also measures vibration of the body; however, this additional path has much

less effect on system response and therefore, has been neglected.
4. The accelerometer transfer function is assumed to be 1, that is, ideal accelerometer.

The problem considered here is the design of an autopilot with improved performance and
robustness based on existing flight control design. The proposed design uses add-on SAC.

3. REVIEW OF THE SAC ALGORITHM

The SAC is a special adaptive model following methodology that requires the plant, which could be
of a very large dimension, to track a model, without requiring the model to be of the same order as
the plant [1, 2]. The model could be a first-order low-pass filter incorporating only the desired plant
time constant or a linear system just large enough to generate a general desired command. Even
more important, basically, the resulting adaptive controller is of the same order as the reduced-order
model. The SAC methodology assumes that some prior knowledge on the stability or the stabiliz-
ability properties of the plant to be controlled is available. This basic knowledge can be used to
test the ASPR properties of the plant or to build the proper parallel feedforward that can render the
plant ASPR and make the use of SAC safe and robust (see [1] and [14]). The SAC can be used in
an attempt to further improve performance and to maintain the desired performance over the entire
range of uncertainty. The SAC scheme is described in Figure 2.

The scheme contains the reference model to be followed, the adaptive gains, and the parallel
feedforward D.s/, which ensures that the augmented plant is ASPR.
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Figure 2. Simple adaptive control (SAC) scheme.

The reference model is represented by

Pxm.t/D Amxm.t/CBmum.t/
ym.t/D Cmxm.t/

(1)

The adaptive gains are obtained as a combination of ‘proportional’ and ‘integral’ gains and satisfy
the following equations:

Ke.t/DKPe.t/CKIe.t/
Kx.t/DKPx.t/CKIx.t/
Ku.t/DKPu.t/CKIu.t/

(2)

KPe.t/D eae
T
a �Pe

KPx.t/D eax
T
m�Px

KPu.t/D eau
T
m�Pu

(3a)

PKIe.t/D eae
T
a �Ie � �KIe.t/, KIe.0/D 0,

PKIx.t/D eax
T
m�Px

PKIu.t/D eau
T
m�Iu

(3b)

where all the �’s are positive definite matrices of proper dimension, and � is a positive scalar.
The control u is given by

uDKuumCKxxmCKeea (4)

The basic parallel feedforward idea is quite simple [1]: if a system G.s/ is known to be stabiliz-
able thorough a controller H.s/, then the inverse H�1.s/ used in parallel with the original plant
makes the augmented system Ga(s) D G(s) C H�1(s) minimum phase. The original G.s/ could
be both unstable and non-minimum phase. When the final relative degree is 1 (in SISO systems as
well as in m�m multivariable systems), the resulting augmented system is ASPR. (Note: Relative
degree has customarily been defined as the number of differentiations, k, that the output equations
y D Cx must pass before one obtains a relation of the form y(k) D MxC Nu where u explicitly
shows. Therefore, although in SISO systems relative degree, 1 implies n poles and n � 1 zeros; in
m�m multivariable systems, it implies n poles and n�m zeros). The poles of the augmented system
Ga.s/ are not affected by the use of parallel feedforward and could be unstable, but Ga.s/ can now
be safely used with SAC, and the stability of the system and the asymptotic tracking of the resulting
adaptive control system are guaranteed.
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Figure 3. Equivalent simple adaptive control scheme.

The SAC scheme can be reconfigured by using the following relations:

e D ym � y

ea D ym � ya D ym � .y CDu/D .ym � y/�Du

ea D e �Du

(5)

The equivalent scheme is depicted in Figure 3.

4. THE PROPOSED SOLUTION OF THE PROBLEM – AN ADD-ON
ADAPTIVE CONTROLLER

The following reasons justify the integration of the adaptive controller in the existing closed-loop
design. (a) The original system is not changed (this is good for maintenance; the existing personnel
is familiar with the equipment). (b) The uncertainty of the closed loop is reduced by the existing
controller, therefore the added controller have to deal with less uncertainty. (c) The added controller
can always be disconnected, and the original performance is restored.

To efficiently integrate the SAC algorithm in the existing design of the autopilot, a different con-
figuration of Figure 1 is needed. The respective architecture is presented in Figure 4. See [15] for
the nomenclature.

The closed-loop transfer function is

P0 D
KAHG

1CKAHG
(6)

In order to proceed and present the proposed add-on adaptive controller, the two blocks controller
configuration of Figure 4 is modified. The equivalent block diagram is presented in Figure 5.

Following Figure 5, the new closed-loop transfer function is

QP D
K1K2HG

1C .1CK1/K2HG
(7)

The configurations of Figures 4 and 5 are equivalent if .1CK1/K2 DKA and KFP0 D QKF QP .

Figure 4. Two blocks controller architecture derived from Figure 1.
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Figure 5. Equivalent three blocks controller configuration.

Figure 6. Three loop autopilot with add-on adaptive controller.

If .1 C K1/K2 D KA, then QP is a stable transfer function with the same closed-loop charac-
teristics as the original transfer function P0. In this case, the only difference between the systems
KFP0 and QKF QP is the low frequency gain. The requirement KFP0 D QKF QP leads to the relation
QKF D

KFKA
K1K2

.
Because KA=K2 D 1 C K1 and KA > 0 , K1 > 0 , K2 > 0, then K2 < KA. The reduced

gain ensures quiet response without noise amplification when maneuvers are not needed. In case of
maneuvers, the proposed add-on adaptive controller will increase the gain in the required time inter-
vals, provided that stability is guaranteed via a matched parallel feedforward. The proposed add-on
control architecture is based on SAC and presented in Figure 6.

The following points are important:

1. .Ke/eq DKe CK1 is bounded from below by K1 where KIe.0/D 0.
2. The gain QKF is included in the adaptive gains used to follow the reference model.
3. If the reference model is a first-order system of the form

ym

um
D

1

1C s�

that is,

Pxm D�
1

�
xmC

1

�
um

then

xm � ym

In this case, the time constant � is included in the tunable gains �P u, �I u.
The design of the SAC controller involves the selection of K1, K2 and the synthesis of D.s/.

Some synthesis procedures of D.s/ are discussed in Appendix. The mainly used procedure is cited
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below and is valid for a proper and stable plant. This is our case because the controlled plant
K2HG=.1CK2HG/ is stable.

The selection process is detailed in the following text.

1. Choose K1 >>1 and K2 which satisfy.1CK1/K2 DKA.
2. Replace K1 in Figure 5 by a stabilizing controller C.s/ such that:

(a) C.s/ is stable.
(b) C.s/ is a minimum phase (all the zeros are in the left-hand plane (LHP)).
(c) C.s/ has high gain.
(d) C.s/ has relative degree 0 or �1 (zero excess of 0 or 1).

3. Select D.s/D C�1.s/

Remarks

1. If K1 >>1 then QP � P0.
2. The requirement of high gain for C.s/ comes from the relation D.s/ D C�1.s/. Because the

SAC algorithm controls the augmented error ea.t/ and the true tracking error is e.t/, the gain
of D.s/ is required to be as small as possible.

Because K1 >>1, the stabilizing controller C.s/, which replaces K1 can be designed with
high gain.

3. The controlled plantK2HG=.1CK2HG/ is less sensitive to parameter variations. Therefore,
the synthesized D.s/ will stand parameter variations and will guarantee that the controlled
plant with the parallel feedforward is ASPR.

4. The preceding procedure provides sufficient conditions for the augmented plant to be ASPR.

5. EXAMPLE

In this example, the add-on SAC based control algorithm is applied to the three-loop missile
autopilot [7–9].

It is demonstrated that the application of the add-on SAC based controller at single operating
point in the flight envelope significantly improves the performance of the autopilot. Observe that the
use of the proposed add-on SAC controller does not eliminate the use of gain scheduling within the
whole flight envelope. The example considers two cases. Both cases use the same autopilot nominal
design but with different changes in the nominal aerodynamic transfer functions:

(i) Case 1 – the nominal gain of the aerodynamic transfer functions a=ı is replaced by constant
gains: nominalC6 dB and nominal �6 dB.

(ii) Case 2 – the nominal gain of the aerodynamic transfer functions a=ı and Pq=ı is changed
abruptly after 2 s by �6 dB.

Remarks
Changes of ˙6 dB in the gains are large changes that challenge the gain margin of the nominal
design.

5.1. Existing three-loop autopilot data and performance

The autopilot parameters follow Nesline and Nesline [7]. The relevant gains and transfer functions
follow the notation of Figure 1.

Controller gains:

KF D 1=0.7583

KA D 0.0018208

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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WI D 15.82481

KR D 0.33835

Aerodynamic transfer functions:

P�

ı
D

0.6477.0.676sC 1/

.s
ı
22.4/2C 2� .0.052=22.4/sC 1

a

ı
D
�1116.5.�0.00081s2C 0.0010546sC 1/

.s
ı
22.4/2C 2� .0.052=22.4/sC 1

Rate gyro transfer function:

P�G
P�
D

1

.s
ı
500/2C 2� .0.65=500/sC 1

Actuator transfer function:

ı

ıc
D

1

.s
ı
250/2C 2� .0.7=250/sC 1

The transfer functions from control surface angle to body rate for each of the flexible modes are the
following:

First structural mode:

P�FB1
ı
D

0.00134Œ.s
ı
345/2C 1�s

.s
ı
259/2C 2� .0.015=259/sC 1

Second structural mode:

P�FB2
ı
D

0.000664Œ.s
ı
255/2C 1�s

.s
ı
6999/2C 2� .0.022=699/sC 1

Structural filters transfer functions:

F1.s/D
.s
ı
259/2C 1

.s
ı
259/2C 2� .0.7=259/sC 1

F2.s/D
.s
ı
699/2C 1

.s
ı
699/2C 2� .0.7=699/sC 1

5.1.1. Case 1 – Different constant gains. The first case (Case 1) considers three different gains
of the aerodynamic transfer function a=ı: nominal, C6 dB and �6 dB. Typical step responses of
the design described in [7] are depicted in Figure 7. The step responses include the nominal case
and cases where the gain of the transfer function a=ı is different from the nominal by ˙6 dB.
The response demonstrates the performance and robustness of the design as presented in [7]. The
response is clearly non-minimum phase with nominal time constant of about 250 ms and with small
amplitude oscillations. Significant changes of the response are observed.

5.1.2. Case 2 – Abrupt gain change. In this case, the nominal gains of the two aerodynamic transfer
functions a=ı and Pq=ı are changed abruptly after 2 s by �6 dB. The step responses for the nominal
gain and for the abruptly changing gain are depicted in Figure 8. Large oscillations and slower time
response are clearly observed after the gain abrupt change.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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Figure 7. Step response of the existing three-loop autopilot design in the nominal case and where a=ı gain
is different from the nominal by˙6 dB.
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Figure 8. Step response of the existing three-loop autopilot design in the nominal case where a=ı and Pq=ı
gains are changed abruptly after 2 s by �6 dB.

5.2. Add-on SAC based adaptive controller data and performance

The equivalent three-loop autopilot gains, as defined in Figure 5, are

K1 D 2.6414
K2 D 5� 10

�4

The synthesized parallel feedforward transfer function is

D.s/D C�1.s/D
1

35

s=2.5C 1

s=10C 1
(8)

No special care has been taken in the design of the stabilizing controller in this example. The
design of a stabilizing controller with relative degree 0 or �1, which meets additional requirements,
is beyond scope of this paper. Robustness maximization with respect to changes in the airframe
parameters is an example of an additional requirement.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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The selected model transfer function reflects the requirement to decrease the time constant of the
autopilot response to 150 ms.

The implemented reference model transfer function is

M.s/D
1

0.15sC 1
(9)

The designed adaptive controller gains are

�Pe D 10
3

�Px D 10
1

�Pu D 10
1

�Ie D 10
4 , � D 10�3

�Ix D 10
2

�Iu D 10
2

5.2.1. Nominal gain performance with the add-on adaptive controller. Figure 9 depicts the nomi-
nal response of the existing three-loop autopilot design versus the response of the proposed add-on
adaptive controller. As it can be seen, the add-on SAC response reaches the 95% of the steady state
value faster than the original autopilot response, although the time constant of both is the same, about
250 ms. This demonstrates that the add-on adaptive controller is an effective tool in improving the
performance of an existing autopilot.

5.2.2. Non-nominal Gain performance with the add-on adaptive controller. Figure 10 shows the
output of the reference model ym and the output of the plant y with the proposed add-on adaptive
controller. The response is given for the nominal a=ı gain, and where, the gain is different from the
nominal by˙6 dB. It is clearly shown that the performance has been preserved in spite of the large
change˙6 dB.

The variation of the time constant and the DC gain can be observed by comparing Figure 10 (the
existing autopilot with the add-on adaptive controller) to Figure 7 (the existing autopilot alone).
With the add-on adaptive controller the variations are much less than those observed in the nominal
autopilot.

By using the add-on SAC scheme, the controlled output is ya and not y. Hence, there is a small
penalty in the tracking error. The resulting tracking errors can be observed in Figure 11. One can
see that a small additional error due to the parallel feedforward is a small price to pay for guarantees
of robustness of the adaptive controller and thus, for the substantial performance improvement over
the linear controller.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5
plant output with Add-On SAC 
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Figure 9. Nominal step response of the existing three-loop autopilot design versus the nominal step response
of the proposed add-on adaptive controller.
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Figure 10. The model output ym and the plant output y in the nominal case, and where, a=ı gain is different
from the nominal by˙6 dB. The reference model is M.s/D 1=.0.15sC 1/.
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Figure 11. The tracking error with add-on SAC in the nominal case, and where, a=ı gain is different from
the nominal by˙6dB.

Figure 12 shows the add-on adaptive controller gains. It also must be noted, however, that the
adaptive gain KIe.t/ in (3b) would increase whenever the tracking error is not zero. Although it
is proved [1, 2] that all adaptive gains converge to constant finite values under ideal conditions,
the gain KIe.t/ without the sigma term in (3b) would continually increase in the presence of any
noise, even at those noise levels that are negligible for any other practical purposes. In spite of
the fact that an ASPR system remains stable with arbitrarily high gains, these gains may be too
high for any practical (and numerical) purpose and may even diverge in time. This is the reason
for the adoption of Ioannou’s simple idea [16, 17] and addition of a � -modification term (or for-
getting factor) in (3b). With the � -modification term, the error gain (i.e., the main adaptive loop
gain) increases whenever the error tends to increase and decreases when large gains are not needed
any more. The coefficient � can be very small, because its aim is only to prevent the gain from
increasing without bound. This effect is not felt by the control gains KIx.t/ and KIu.t/. The vari-
ation in the adaptive gains due to ˙6 dB change in the a=ı gain is not more than 1.5 times the
nominal value.
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Figure 12. The gains of the add-on simple adaptive control algorithm.
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Figure 13. The model output ym and the plant output y for the abruptly changing gain with add-on SAC.

5.2.3. Abrupt gain change performance with the add-on adaptive controller. The abrupt gain
change performance is depicted in Figures 13–15. Figure 13 describes the model response and
the response obtained with the add-on SAC adaptive controller. Figure 14 presents the associated
tracking error. The gains of the SAC adaptive algorithm are presented in Figure 15.

Remarks

1. Note that the paper compares a classical design, where the input command is the only signal
that is supplied to the plant, with the add-on SAC, where the command is first passed through
the model and then the output of the model is supplied to the plant as the new desired com-
mand along with the feedforward signals. One is therefore tempted to use the same reference
model with the classical design. However, the first effect of using the model would be slowing
the plant response even more. In order to improve the time response, one could then think of
using fixed feedforward gains that, in principle, could result in prefect model tracking without

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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Figure 14. The tracking error for the nominal design and for the abruptly changing gain with add-on
simple SAC.
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Figure 15. The gains of the add-on SAC algorithm for the case of abruptly changing gain.

requiring any adaptive controller. However, the reason fixed feedforward gains are not cus-
tomarily used in missile design is because their computation would require perfect knowledge
of plant parameters. Unlike the feedback loop that can stand some deviation from the nominal
gain, the feedforward addition is entirely open-loop and, therefore, any deviation from the
nominal values is transmitted as 100% error to the output. Instead, the adaptive feedforward
gains are generated using the tracking error, and the adaptations ends when the error reaches
its minimum.

2. At first look, one may find it peculiar to expect from an adaptive controller, which first must
pass an adaptation process, to improve the performance of a well-designed fixed gain con-
troller. The answer to this remark is that, although the adaptive feedforward algorithm was
first of all developed from reasons of stability, it actually is the optimal control solution based
on the steepest descent minimization [4]. In other words, from the very first moment and
independently of any other factors, the adaptive feedforward gains perform a steepest descent
minimization of the (square) tracking error.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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3. The next question is why would the internal adaptive gain be needed, when the LTI design
has already reached the ‘best’ value? The answer is that whenever, because some sudden
maneuver, the tracking error ey.t/ attempts to increase, the internal adaptive gains also starts
increasing at the rate of e2y.t/, and thus, because stability is guaranteed, forces the error to
decrease. Furthermore, it only increases as long as it is needed and, due to the � -term in (3b),
it comes back down as soon as the need has passed.

4. Last but not the least, we assumed that a gain drop of 6 dB from the nominal value still remains
within the stability domain. However, this is also only a design assumption and could also be
affected by uncertainty. In any case, a gain drop that in the LTI design could lead to total
destruction, may only tend to lead to some error increase with the add-on SAC, because it
would result in sudden gain increase that would bring the plant back into the stability domain
and, as test showed, would be hardly felt in the plant performance.

6. CONCLUSIONS

The add-on adaptive control algorithm that can always improve the performance of any stable linear
system has been presented. It is shown and proved that such a controller always exists. The proofs
are constructive, thus presenting a simple alternative where it is required to improve the system
performance and robustness.

APPENDIX: EXISTENCE AND SYNTHESIS OF PARALLEL FEEDFORWARD THAT
RENDERS SISO SYSTEM ASPR

Many readers and control practitioners express skepticism when they relate to the general idea of
finding the appropriate parallel feedforward controller. Although after some experience, in most
cases, finding an appropriate PFC is pretty straightforward; it is worth to give the necessary theory
behind it in order to prove that a D.s/ exists and can be synthesized in the more general case.

Sufficient stability conditions for the SAC algorithm of Section 3 are discussed in [1, 2]. These
conditions are briefly stated here: The add-on SAC algorithm is stable and the tracking error ea(t)
asymptotically converges to zero if the parallel feedforward D.s/ is such that the augmented plant

Pa.s/D P.s/CD.s/ (A.1)

is ASPR. Positive real systems are discussed in [18]. Necessary and sufficient conditions for a
system to be ASPR are stated below.

Theorem 1 ([1, 14])
An LTI system is ASPR iff it is minimum phase and its relative degree is 0 or 1.

As will be shown later, it implies that if D�1.s/ stabilizes P.s/, then Pa.s/ is a minimum phase.
If in addition the relative degree of Pa.s/ is 1 or 0, the required ASPR conditions are satisfied.

The main result of this Appendix is that any minimal strictly proper system can be augmented
in such a way that it is made ASPR. The first part of the Appendix deals with stable and proper
systems. The second part extends the results to any minimal strictly proper system.

Proper and stable systems

Theorem 2 ([19], Section 5.1)
Let S be the set of all stable, proper, and real-rational transfer functions. Assume that P 2 S . Then
the set of all controllers C, for which the feedback system is internally stable, equals

fQ=.1�QP/ IQ 2 Sg (A.2)
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Proof
The full proof is presented in [19]. Here, only a sketch of the proof is given. If both Q and P are
stable, then

C DQ=.1�QP/ (A.3)

and the closed loop is

CP

1CCP
D

Q=.1�QP/P

1CQ=.1�QP/
D

QP

1�QP CQP
DQP 2 S (A.4)

�

Lemma 1 ([20])
Assume thatP 2 S ,Q 2 S . LetD be defined byD�1 D C DQ=1�QP . Then PCD is minimum
phase.

Proof

P CD D P C .1�QP/=QD .QP C 1�QP/=QD 1=Q, (A.5)

Because Q 2 S is stable then Q�1 is minimum phase. �

Lemma 2 ([20])
Assume that P 2 S , Q is stable and minimum phase, and D�1 D Q=.1�QP/. Then, P CD is
minimum phase and stable.

Proof

P CD DQ�1, (A.6)

Because Q is stable and minimum phase, then Q�1 is minimum phase and stable. �

Theorem 3 ([20])
Assume that P 2 S , Q 2 S with relative degree {0,-1}, and D�1 DQ=.1�QP/ . Then P CD is
minimum phase with relative degree {0,1} and thus, ASPR.

Proof
The proof follows the lines of Lemmas 1 and 2. �

Theorem 4
Assume that P 2 S , Q 2 S are minimum phase with relative degree {0,-1}, and D�1 D
Q=.1�QP/. Then C DD�1 is minimum phase with relative degree {0,-1}.

Proof
Equation (A.6) leads to

P CC�1 DQ�1 (A.7)

Let P ,C ,Q be described by

P DNP =DP , C DNC =DC , QDNQ=DQ (A.8)

where P is of order n ,Q is of order nQ , and the relative degree of Q is r . Then,

NP =DP CDC=NC DDQ=NQ (A.9)

and thus,

NC=DC DDPNQ=.DPDQ �NPNQ/ (A.10)
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Because P 2 S , Q 2 S , then DP and DQ have all roots in the LHP. Because NC D DPNQ, then
C is minimum phase.

Let �.�/ and �r.�/ denote the degree and the relative degree of .�/, respectively. Then,

�r.C /D �.DC /� �.NC /D �.DPDQ �NPNQ/� �.DPNQ/

DmaxfnC nQ , nC nQ � rg � .nC nQ � r/D r D �r.Q/
(A.11)

If �r.Q/ 2 f�1, 0g, then �r.C /D �r.Q/ 2 f�1, 0g �

Remarks

1. The use of D D C�1 where C is minimum phase with relative degree {-1,0} guarantees that
the augmented plant P CD is ASPR.

2. A controller C which is stable, minimum phase and has relative degree {-1,0} also guarantees
that the augmented plant P CD is ASPR.

Strictly proper systems

Let the minimal strictly proper nth order SISO plant P be described as

P.s/D C.sI �A/�1B (A.12)

where A,B ,C are the state space matrices. Then a coprime factorization of P is (see [19]):

P.s/DN=M (A.13)

where

M.s/D F .sI � .ACBF //�1 B C 1 (A.14a)

N.s/D C .sI � .ACBF //�1 B (A.14b)

X.s/D F .sI � .ACHC//�1H (A.14c)

Y.s/D�F .sI � .ACHC//�1 B C 1 (A.14d)

are stable transfer functions. The matrices F2R1xn, H2Rnx1 are real matrices selected such that
A+BF and A+HC are stable. The matrices M ,N ,X , and Y satisfy the constraint

N.s/X.s/CM.s/Y.s/D 1 (A.15)

Theorem 5 ([19], Section 5.4)
Let the system P DN=M be minimal strictly proper (not necessarily stable or minimum phase) and
N ,M be a coprime factorization over S (i.e., N ,M are stable). Let X ,Y be two transfer functions
in S satisfying NX CMY D 1.

Then the set of all controllers, C, for which the feedback system is internally stable equals

f.X CMQ/=.Y �NQ/ IQ 2 Sg (A.16)

Lemma 3
Assume that P is minimal strictly proper and Q 2 S . Let D be defined by D�1 D C D
.X CMQ/=.Y �NQ/. Then, P CD is minimum phase.

Proof

P CD D
N

M
C
Y �NQ

X CMQ
D
NX CMY CNMQ�NMQ

M .X CMQ/
D

1

M .X CMQ/
, (A.17)
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Because Q,X ,M 2 S , then M .X CMQ/ is stable (as S is closed under addition and
multiplication). Thus, 1=M .X CMQ/ is minimum phase. �

Theorem 6
Assume that P is minimal strictly proper, Q 2 S with relative degree {0,-1}, and D�1 D
.X CMQ/=.Y �NQ/ . Then, P C D is minimum phase with relative degree {0,1} and thus,
ASPR.

Proof
Following Lemma 3 P CD is minimum phase. Therefore, it is only left to show that �r.P CD/ 2
f0, 1g where �r.P CD/ denotes the relative degree of .P CD/.

Because

P CD D 1=M .X CMQ/, (A.18)

then an equivalent requirement is to show that �r ŒM.X CMQ/� 2 f�1, 0g .
Equation (A.14) indicates that M, N, X, Y are of order n where �r.M/ D 0 , �r.N / D

rN , �r.X/D rX . Assuming that Q is of order nQ with �r.Q/D r , then

�r ŒM .X CMQ/�D �r

�
.snC .../

.snC .../

�
.sn�rX C .../

.snC .../
C
.snC .../

.snC .../

.snQ�r C .../

.snQ C .../

��
(A.19a)

Therefore,

�r ŒM.X CMQ/�D nC nQ �max
�
nQ C n� rX ,nC nQ � r

�
(A.19b)

The two cases are relevant:

(i)

nQ C n� rX > nC nQ � r

�r ŒM.X CMQ/�D nC nQ � .nQ C n� rX /D rX
(A.20)

Because X is proper rX > 0, and this is unacceptable.
(ii)

nQ C n� rX < nC nQ � r

�r ŒM.X CMQ/�D nC nQ �
�
nC nQ � r

�
D r

(A.21)

The requirement �r ŒM.X CMQ/� 2 f�1, 0g means that �r.Q/ D r 2 f�1, 0g . Thus, the
relative degree of Q must be �1 or 0 to make ASPR any strictly proper plant.

�

Parallel feedforward synthesis

Theorems 3, 4, and 6 enable the synthesis of a parallel feedforward, which guarantees that the aug-
mented plant P CD is ASPR. Based on these theorems, the synthesizing algorithms are detailed as
follows.

Algorithm 1 (for a proper and stable plant P.s/)
Select a transfer function Q�1.s/ such thatQ�1.s/:

(i) has relative degree 0 or 1 (pole excess of 0 or 1);
(ii) is minimum phase (all zeros are in the LHP);

(iii) has no poles on the imaginary axis; and
(iv) has small DC gain;

then,

D.s/DQ�1.s/�P.s/ (A.22)
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Algorithm 2 (for a proper and stable plant P.s/)
Design a stabilizing controller C.s/ such that:

(i) C.s/ is stable;
(ii) C.s/ is minimum phase (all zeros are in the LHP);

(iii) C.s/ has high gain; and
(iv) C.s/ has relative degree 0 or �1;

then,

D.s/D C�1.s/ (A.23)

Algorithm 3 (for a strictly proper plant P.s/)
Select a stable Q.s/ with relative degree f0,�1g. Then,

D�1 D .X CMQ/=.Y �NQ/ (A.24)

where

NX CMY D 1 (A.25)

P.s/D C.sI �A/�1B (A.26)

and

M.s/D F .sI � .ACBF //�1 B C 1 (A.27)

N.s/D C .sI � .ACBF //�1 B (A.28)

X.s/D F .sI � .ACHC//�1H (A.29)

Y.s/D�F .sI � .ACHC//�1 B C 1 (A.30)

are stable transfer functions. The matrices F2R1xn, H2Rnx1 are selected such that A C BF and
ACHC are stable.

Remarks

1. The SAC algorithm controls the augmented error ea.t/. In order to reduce the difference jea(t)-
e(t)j, the gain ofD.s/ is required to be as small as possible. Note that low gain ofD.s/ means
high gain of C.s/.

2. Algorithms 1 and 3 require the use of the plant model in terms of transfer functions or state
space matrices. Algorithm 2 may be applied even when only the measurements of the plant
transfer function are available. In this case, the controller can be designed, for example, by
using the QFT method [20].
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